
CreateAI Platform Available LLM Models
For clarity:
means: “Supported” and “Available” on this platform
means: “Not Available” or “Not Supported” on this platform
ASU GPT has 33 Models Available, Model Comparison has 36 models Available, My AI Builder has 33 models Available
Provider | LLM Name | Modality | API Access | Model Comparison | MyAI Builder | ASU GPT |
| Claude 2 | Text | ||||
Claude 2.1 | Text | |||||
Claude 3 Haiku | Text, Vision | |||||
Claude 3 Opus | Text, Vision | |||||
Claude 3 Sonnet | Text, Vision | |||||
Claude 3.7 Sonnet | Text, Vision | |||||
Claude Instant (Claude v1.2) | Text | |||||
Command | Text | |||||
Command Light | Text | |||||
Jurassic 2 Ultra | Text | |||||
Jurassic 2 Mid | Text | |||||
Llama 3 405B | Text | |||||
Llama 3.2 11B | Text | |||||
Llama 3.2 1B | Text | |||||
Llama 3.2 3B | Text | |||||
Llama 3.2 90B | Text | |||||
Mistral - 7B | Text | |||||
Mixtral - Mistral 8 x 7B | Text | |||||
Mistral Large | Text | |||||
Nova Lite | Text | |||||
Nova Micro | Text | |||||
Nova Pro | Text | |||||
Titan G1 Express | Text | |||||
Titan G1 Light | Text | |||||
![]() | Bison (5 variants) - API Only | Text | ||||
Gemini 1.5 Flash | Text, Vision, Audio | |||||
Gemini 2 Flash | Text, Vision, Audio | |||||
Gemini 2 Flash Lite | Text, Vision, Audio | |||||
Gemini 2 Flash Pro | Text, Vision, Audio | |||||
Gemini Pro | Text | |||||
Gemini Pro 1.5 | Text, Vision, Audio | |||||
Gemini Pro Vision | Vision | |||||
Imagen3 | Image Gen | |||||
![]() | Dalle 3 | Audio | ||||
GPT 3.5 (2 variants) | Text | |||||
GPT 3.5 (2 variants) | Text | |||||
GPT 4 (3 variants) | Text | |||||
GPT 4 (2 variants) | Text | |||||
GPT 4o | Text | |||||
GPT 4o mini | Text | |||||
GPT 4 Turbo | Text, Vision | |||||
GPT o1 | Text | |||||
GPT o1 Mini | Text | |||||
o3 Mini | Text | |||||
OpenAI TTS | Text | |||||
Whisper | Text | |||||
![]() | GPT 3.5 (2 variants) | Text | ||||
GPT 4 (2 variants) | Text |
Keep Reading
Breakdown of RAG Model Parameters, Settings and Their Impact
Retrieval-Augmented Generation (RAG) is an advanced approach in natural language processing that integrates information retrieval and generative language modeling. Unlike traditional language models that generate responses solely based on their pre-trained knowledge, RAG combines retrieval mechanisms with generative models to enhance the relevance and accuracy of its responses. This hybrid framework works by first retrieving relevant documents or information from a predefined knowledge base (e.g., databases, documents, or PDFs) and then using a generative model (such as a transformer-based model) to synthesize a response that incorporates the retrieved context.